
1.  Introduction
Global climate models (GCMs) are known to have a “drizzling” bias that is, characterized by unrealistically 
high precipitation frequency (F) and duration (D) but low intensity (I), even though precipitation amount 
(A) is realistic (Dai, 2006; DeMott et al., 2007; Zhou et al., 2008). Despite many efforts (e.g., Zhang, 2002; Xie 
et al., 2004; Zhang & Mu, 2005) to address this long-standing problem, it persists for generations of GCMs 
(Chen & Dai, 2019; Flato et al., 2013; Stephen et al., 2010; Trenberth & Zhang, 2018). The “drizzling” bias 
impedes realistic representation of precipitation characteristics, as well as projections of future hydrologic 
extremes (Trenberth, 2011; Trenberth et al., 2003). It also contributes to biases in model-simulated land 
surface processes by increasing surface evaporation and decreasing runoff (Qian et al., 2006). The issue is 
more prominent at sub-daily timescales, at which the majority of extreme events occur (Westra et al., 2014). 
Although cloud-resolving regional models simulate more realistic precipitation (e.g., Dai et al., 2020; Prein 
et  al.,  2017), GCMs remain our primary tool for studying current climate and projecting future climate 
changes. Therefore, to improve the credibility of GCMs, we need to understand and reduce their “drizzling” 
bias.

Too frequent and premature occurrence of moist convection is found in models compared with observations 
(Chen & Dai, 2019; Dai & Trenberth, 2004; DeMott et al., 2007). In reality, atmospheric instability often 
accumulates because of convective inhibition (CIN) or negative buoyancy before intense convection starts 
(Chen et al., 2020; Dai, 2006; Dai & Trenberth, 2004). Chen and Dai (2019) found that in recent versions of 
the Community Atmosphere Model (CAM4 & CAM5), convective precipitation generated by the cumulus 

Abstract  Overestimation of precipitation frequency and duration while underestimating intensity, 
that is, the “drizzling” bias, has been a long-standing problem of global climate models. Here we 
explore this issue from the perspective of precipitation partitioning. We found that most models in the 
Climate Model Intercomparison Project Phase 5 (CMIP5) have high convective-to-total precipitation 
(PC/PR) ratios in low latitudes. Convective precipitation has higher frequency and longer duration but 
lower intensity than non-convective precipitation in many models. As a result, the high PC/PR ratio 
contributes to the “drizzling” bias over low latitudes. The PC/PR ratio and associated “drizzling” bias 
increase as model resolution coarsens from 0.5° to 2.0°, but the resolution's effect weakens as the grid 
spacing increases from 2.0° to 3.0°. Some of the CMIP6 models show reduced “drizzling” bias associated 
with decreased PC/PR ratio. Thus, more reasonable precipitation partitioning, along with finer model 
resolution should alleviate the “drizzling” bias within current climate models.

Plain Language Summary  Precipitation occurs more frequently and lasts longer but with 
lower intensity in global climate models than in the real world. We explore this issue from the perspective 
of precipitation partitioning, that is, how total precipitation is divided into convective and non-convective 
components in models. We find that most CMIP5 models produce too much convective but too little 
non-convective precipitation in low latitudes. Convective precipitation is generally more drizzle-like than 
non-convective precipitation in models. This contributes to the “drizzling” bias at low latitudes. Climate 
models with coarser resolution typically have higher convective-to-total ratios and larger “drizzling” 
biases. Hence, more realistic precipitation partitioning and smaller grid spacing should help reduce the 
“drizzling” bias.
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parameterization is too frequent and long-lasting with reduced intensity, and it unrealistically dominates to-
tal precipitation, leading to the “drizzling” bias. Model-simulated convective precipitation is affected by sev-
eral aspects of the convective parameterization. These include the closure, convective trigger, entrainment 
rate, the spectrum of the convective and mesoscale clouds, and other parameters whose physical basis is not 
well understood (Wilcox & Donner, 2007). DeMott et al. (2007) suggests that the small entrainment rate in 
the Zhang and McFarlane (1995; hereafter ZM95) convective parameterization inhibits shallow convection, 
thereby impeding the moistening of the environment and subsequent development of deep and intense 
convection in CAM. Suppression mechanisms based on relative humidity thresholds or a precondition of 
positive low-level moisture convergence lead to overall smaller biases (Rosa & Collins, 2013). In addition, 
decreasing the convective available potential energy (CAPE) consumption time scale or increasing model 
time step can increase the strength of convection in CAM (Williamson, 2013).

Meanwhile, precipitation partitioning can also be altered by the use of different cloud microphysics 
schemes, which produce the resolved non-convective (or large-scale) precipitation in models. Even with 
the same ZM95 convective parameterization, convective and non-convective precipitation characteristics 
vary considerably when different cloud microphysics schemes are used in current and previous versions of 
CAM (Chen & Dai, 2019; Gettelman et al., 2008). Interactions of cumulus and microphysics schemes also 
modulate the convective and large-scale precipitation amount (Held et al., 2007; Lin et al., 2013). Previous 
studies (e.g., Lin et al., 2013; Rauscher et al., 2016) found that the simulated non-convective precipitation is 
closely coupled to the low-level convergence and surface heat flux. Meanwhile, large-scale processes (e.g., 
lower tropospheric moisture divergence) interact with convective schemes and influence the spatiotempo-
ral distributions of convective precipitation (Sakaguchi et al., 2018). In addition, cumulus and microphysics 
parameterizations jointly determine low-latitudes cloud cover (Ma et al., 2018), which impacts Earth's radi-
ation budget and precipitation. To produce more realistic total precipitation, it is recommended to give more 
credit to large-scale processes in models (Kooperman et al., 2018).

The coarse spatial resolution of many GCMs is found to be partly responsible for the “drizzling” bias (Ste-
phens et al., 2010). The influence of model resolution is two-fold (Chen & Dai, 2019). The first impact is 
from the area aggregation effect–as the spatial sampling area or the size of grid box increases, the probability 
or frequency of precipitation increases (Chen & Dai, 2018). The second effect comes from increased contri-
bution from parameterized convective precipitation as model resolution decreases. In CAM, finer resolu-
tion improves overall simulated precipitation characteristics because non-convective precipitation charac-
teristics (including its F, I, and D) are closer to observed values than those of convective precipitation (Chen 
& Dai, 2019). Unlike GCMs, observational products classify convective and non-convective precipitation by 
radar reflectivity (Awaka et al., 1997). This leads to differences in how observations and models define the 
convective-to-total precipitation (PC/PR) ratio. Despite this inconsistency, this ratio still provides a useful 
metric for evaluating GCMs. Bacmeister et al. (2014) showed that the PC/PR ratio in the tropics is consid-
erably higher in CAM than in TRMM satellite observations, which is estimated to be around 0.5 (Dai, 2006; 
Yang & Smith, 2008). This ratio decreases as model grid spacing decreases (Bacmeister et al., 2014; Chen 
& Dai, 2019), because more precipitation is resolved by microphysics schemes and less is parameterized 
by cumulus schemes with smaller grid sizes. Increasing model resolution also improves the simulation of 
extreme precipitation (Kopparla et al., 2013; Wehner et al., 2014;). Therefore, increasing model resolution 
and/or reducing parameterized convective precipitation (e.g., Arakawa & Wu, 2013) could help reduce the 
“drizzling” bias.

The above studies are mostly based on a few individual models (mainly CAM) or CMIP3 models. It is worth-
while to investigate whether these results apply to other recent climate models. Many CMIP5 models also 
suffer from the “drizzling” bias (Flato et al., 2013). The CMIP5 models differ considerably from each other 
in many aspects, such as resolution and precipitation schemes; these factors have substantial influences on 
their simulated precipitation (Benedict et al., 2017; Covey et al., 2016; O'Brien et al., 2013). In particular, the 
moist convection and microphysics schemes that directly produce precipitation differ considerably (Rosa & 
Collins, 2013). Increasing model resolution likely improves the simulated precipitation characteristics for 
individual models (Chen & Dai, 2019; Kopparla et al., 2013). However, it is impractical to vary the resolution 
of each GCM to investigate this effect. Nevertheless, it may be informative to group the CMIP5 models into 
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a few categories, according to their resolution or formulations of certain physics processes (e.g., DeAngelis 
et al., 2015; Rosa & Collins, 2013; Thackeray et al., 2018).

Building on the CAM-based results of Chen and Dai (2019), here we address the “drizzling” problem in 
CMIP5 models. We start from the perspective of precipitation partitioning (i.e., the PC/PR ratio), and sug-
gest ways to improve the simulated precipitation characteristics. Specifically, we investigate (a) whether 
the PC/PR ratio is too high in the CMIP5 and CMIP6 models with different types of parameterizations; (b) 
whether biases in the PC/PR ratio and convective precipitation contribute to the “drizzling” bias for total 
precipitation, and (c) whether model resolution also plays a role in these biases. We also analyze several 
CMIP6 models to find out whether this bias has been reduced in the new generation of models.

2.  Data and Methods
2.1.  CMIP Models and Their Classification

We use three-hourly data of total and convective precipitation for 1980–2005 from the all-forcing historical 
simulations done by 25 CMIP5 models and 6 CMIP6 models (Table 1). Non-convective precipitation is cal-
culated by subtracting convective precipitation from total precipitation. Also listed in Table 1 are the models' 
horizontal grid spacing, and deep convection and large-scale (i.e., non-convective) precipitation schemes.

As shown in Table 1, various deep convection and microphysics schemes were employed in the models. To 
provide some physical guidance in evaluating precipitation, we classified the GCMs mainly based on their 
convective parameterizations (see Table 1). Many models used mass flux-type schemes such as the Arakawa 
and Schubert (1974, hereafter “AS”) and ZM95. For cloud microphysics schemes, several models adopted 
the Rasch and Kristjánsson (1998, hereafter RK98) and Tiedtke (1993) schemes. A detailed description of 
these schemes is beyond the scope of this study.

By classifying the GCMs into nine groups, each with similar convection schemes and often also similar mi-
crophysics schemes (Table 1), we hope to gain physical insights during the evaluation. For instance, many 
of the models in the “ZM” group, which includes models that use the ZM95 scheme, also use the RK98 mi-
crophysics scheme. The “AS” group is for models whose convective parameterizations are based on the AS 
scheme, and three of five such models use the Le Treut and Li (1991) microphysics scheme. Of course, even 
models with the same parameterizations may have their own nuances; likewise, different parameterizations 
might be similar in certain ways. Nonetheless, we hope that such a classification can help us understand the 
influence of the schemes on precipitation partitioning and the “drizzling” bias.

2.2.  Observational Datasets and Metrics Calculation

We used 3-hourly precipitation on a 0.25° grid from 50°S to 50°from TRMM satellite observations, name-
ly TRMM 3B42 data set (TRMM, 2011a), to evaluate the model simulations. TRMM 3B42 3-hourly pre-
cipitation estimates were adjusted to match the monthly rain-gauge-based analysis from GPCP (Huffman 
et al., 2007). The spatial patterns of the mean precipitation amount in TRMM 3B42 are comparable to other 
observational products (Dai et al., 2007). Another TRMM product, 3A25 (TRMM, 2011b), classifies month-
ly precipitation (on a 0.5° grid from 45° to 45°N) into three categories: stratiform, convective, and other (a 
small part, added to total precipitation) by a vertical profile method (V-method) and a horizontal pattern 
method (H-method, Awaka et al., 1997; Yang & Smith, 2008). We used the convective and total monthly 
precipitation from TRMM 3A25 to derive the PC/PR ratio as an approximate reference for evaluating mod-
el-simulated PC/PR ratio. We realize that the definition of convective precipitation is not exactly the same 
between TRMM 3A25 and CMIP5 models (Dai, 2006; Pendergrass & Hartmann, 2014). Thus, the TRMM-
based PC/PR ratio is used only as a rough estimate in this comparison. GPCP v2.2 (Huffman et al., 2009) 
monthly precipitation is used as a sanity check of the simulated precipitation amount.

The PC/PR ratio is calculated using multi-year (1980–2005 for models, 1998–2014 for TRMM) mean convec-
tive precipitation and total precipitation at each grid point. The calculation of precipitation characteristics 
follows our previous studies (e.g., Dai, 2006; Chen & Dai, 2019). To define non-trace 3-hourly precipitation 
(P), we used the threshold of P > 0.1 mm/hr as in Dai et al. (2007). Precipitation frequency is the number of 
3-hourly precipitation events divided by the total number of observations or samples, intensity is the mean 
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Group name (group-averaged 
PC/PR, F, I, and D)

Model name (PC/PR, F, I, 
and D)

Atmospheric grid 
size (lat x lon) Deep convection scheme

Large-scale 
precipitation scheme

ZM (0.79, 28.86, 0.55, 15.55) CCSM4 (0.76, 34.03, 0.46, 
26.84)

∼1.25° × 0.94° Mass-flux scheme, (Zhang and 
McFarlane, 1995)

Rasch and 
Kristjánsson (1998); 
Zhang et al. (2003)

NorESM1-M (0.79, 35.20, 0.40, 
15.46)

∼2.5° × 1.9° Same as above Same as above

bcc-csm1-1 (0.86, 22.48, 0.64, 
11.86)

∼2.8° × 2.8° Zhang and McFarlane (1995); 
Zhang (2002); Zhang and Mu (2005)

FGOALS-g2 (0.72, 19.2, 0.76, 
8.61)

∼2.8° × 3° Same as above

BNU-ESM (0.93, 39, 0.40, 9.89) ∼2.8° × 2.8°

bcc-csm1-1-m (0.69, 23.24, 
0.64, 20.64)

∼1.125° × 1.125° Similar to above; Wu (2012)

AS (0.67, 26.18, 0.58, 11.65) MIROC5 (0.69, 31.6, 0.49, 
12.6)

∼1.4° × 1.4° Entraining plume, based on 
Gregory (2001) and Arakawa and 

Schubert (1974); Chikira and 
Sugiyama (2010)

Wilson and 
Ballard (1999); 

Watanabe 
et al. (2010)

MIROC-ESM (0.76, 28.31, 
0.51,14.07)

∼2.8° × 2.8° Arakawa and Schubert (1974); (Emori 
et al., 2001)

Watanabe et al. (2011)

MIROC-ESM-CHEM (0.77, 
28.43, 0.51, 14.12)

∼2.8° × 2.8° Same as above Same as above

MIROC4h (0.47, 19.2, 0.78, 
8.5)

∼0.56° × 0.56°

MRI-CGCM3 (0.67, 23.38, 
0.61, 8.94)

1.125° × 1.125° mass-flux, based on Arakawa and 
Schubert (1974) and Tiedtke (1989); 

Yukimoto et al. (2012)

Based on Tiedtke (1993); 
MRI-TMBC scheme 

(2012)

*MIROC6 (0.78, 27.36, 0.58, 
11.93)

∼1.4° × 1.4° Same as MIROC5, Tatebe et al. (2019) Same as MIROC5, 
Tatebe et al. (2019)

GFDL (0.93, 34.21, 0.45, 28.55) GFDL-ESM2G (0.95, 33.67, 
0.46, 29.67)

2.5° × 2.0° Relaxed Arakawa-Schubert scheme, 
Moorthi and Suarez (1992)

Anderson et al. (2004)

GFDL-ESM2M (0.96, 33.97, 
0.44, 28.68)

2.5° × 2.0°

GFDL-CM3 (0.88, 34.98, 0.44, 
27.3)

2.5° × 2.0° Donner et al. (2011); Wilcox and 
Donner (2007)

Same as above

*GFDL-CM4 (0.68, 29.34, 0.50, 
21.57)

2.5° × 2.0° Zhao et al. (2018) Same as above

Tiedtke (0.85, 21.60, 0.73, 8.88) CMCC-CM (0.75, 17.05, 0.91, 
9.14)

0.75° × 0.75° Mass flux scheme, Tiedtke (1989); 
Nordeng (1994)

Lohmann and 
Roeckner (1996)

FGOALS-s2 (1.00, 19.17, 0.79, 
7.47)

∼2.8° × 1.7° Mass flux scheme, Tiedtke (1989) Bao et al. (2013)

EC-EARTH (0.79, 28.59, 0.49, 
10.04)

1.125° × 1.125° Tiedtke (1989); Bechtold et al. (2008) Tiedtke (1993)

*EC-Earth3 (0.81, 31.84, 0.58, 
9.67)

∼0.70° × 0.70° Same as above, Massonnet et al. (2020) Massonnet et al. (2020)

UK (0.86, 25.83, 0.58, 11.64) HadGEM2-ES (0.97, 23.93, 
0.63, 12.04)

∼1.875° × 1.24° Mass-flux scheme, Gregory and 
Rowntree (1990)

Smith (1990); Wilson 
and Ballard (1999)

ACCESS1-3 (0.74, 27.73, 0.52, 
11.23)

∼1.9° × 1.25° Same as above, Bi et al. (2013) Same as above

Table 1 
Twenty-Five CMIP5 and Six CMIP6 (Marked by *) Models, Their Grid Size, Deep Convection, and Large-Scale Precipitation Schemes
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precipitation rate averaged over all precipitation events (   F I A / t, where A is accumulated precipita-
tion, and Δt is the time of accumulation), and duration is the temporal length of a continuous precipitation 
event at a given grid during which the rates exceed the 0.1 mm/hr threshold for all the 3-h periods. It is 
worth mentioning that the F, I and D are sensitive to the thresholds chosen (e.g., Trenberth Zhang, 2018; 
Chen & Dai, 2018), with higher threshold values yield lower F and D but higher I. However, because the 
same threshold is applied to all models and observations, the afore-mentioned sensitivity does not affect the 
general results. The F, I, and D are computed at each grid box for each season of each year and then averaged 
over all the years. Lastly, model grid spacing is measured using    x y , with ∆x (°) and ∆y (°) being 
the meridional and zonal grid spacing in degrees. The ∆r ranges from ∼0.5° to ∼2.9° for the CMIP5 models. 
Note that instead of interpolating models to a common grid, we used data on their native grid to calculate 
the F, I, and D. We did so because all spatial interpolations of precipitation would inevitably change the 
probability of precipitation, and hence affect the estimated characteristics (Chen & Dai, 2018). For com-
paring with model F, I, and D, we simply averaged the TRMM 3B42 3-hourly precipitation data onto 0.5° 
lat × 0.5° lon, 1.0° × 1.0°, 1.5° × 1.5°, 2.0° × 2.0°, 2.5° × 2.5°, and 3.0° × 3.0° grids, so that one of these grids 
is close to a model grid. Using data with similar spatial and temporal resolution is critical for comparing 
these precipitation characteristics, because their estimated values are highly sensitive to the data resolution 
(Chen & Dai, 2018).

3.  The PC/PR Ratio and Precipitation Characteristics in CMIP5 Models
Despite simulating fairly realistic precipitation amounts (not shown), the PC/PR ratio between 20°S and 
20°N is well above the TRMM satellite estimate of ∼0.45 in all 25 CMIP5 models (Figure 1, Table 1). This 
was also the case in CMIP3 models (Dai, 2006) and CAM (Chen & Dai, 2019). FGOALS-s2 has a PC/PR 
ratio of 1.0 (i.e., no non-convective precipitation) between about 50°S and 30°N (Figure 1). Hence, we con-
sider FGOALS-s2 as an outlier and excluded it in subsequent analyses. The PC/PR ratio has little variation 
within 20°S–20°N for individual models, but decreases rapidly outside the tropics. The high PC/PR ratio 
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Table 1 
Continued

Group name (group-averaged 
PC/PR, F, I, and D)

Model name (PC/PR, F, I, 
and D)

Atmospheric grid 
size (lat x lon) Deep convection scheme

Large-scale 
precipitation scheme

GISS (0.48, 31.53, 0.57, 13.28) GISS-E2-H (0.48, 29.72, 0.57, 
13.34)

2.5° × 2.0° Yao and Del Genio (1989); Gregory (2001) Del Genio et al. (1996); 
Schmidt et al. (2014)

GISS-E2-R (0.48, 33.34, 0.56, 
13.21)

2.5° × 2.0° Same as above Same as above

*GISS-E2-1-G (0.39, 24.40, 
0.63, 17.82)

2.5° × 2.0° Kelley et al. (2020) Kelley et al. (2020)

Emanuel (0.73, 32.65, 0.45, 
20.31)

IPSL-CM5A-LR (0.74, 32.47, 
0.43, 20.13)

∼3.75° × 1.875° Mass-flux scheme, Emanuel (1991) Le Treut and Li (1991); 
Hourdin et al. (2006)

IPSL-CM5A-MR (0.72, 32.83, 
0.46, 20.49)

∼2.5° × 1.25° Same as above Same as above

*IPSL-CM6A-LR (0.82, 40.24, 
0.40, 51.25)

∼2.5° × 1.25° Hourdin et al. (2020) Hourdin et al. (2020)

CNRM-CM5 (0.94, 37.22, 0.47, 
12,74)

∼1.4° × 1.4° Bougeault (1982) Ricard and Royer (1993)

*CNRM-CM6 (0.58, 20.57, 
0.75, 12.88)

∼1.4° × 1.4° Voldoire et al. (2019) Voldoire et al. (2019)

INMCM4 (0.95, 50.83, 0.34, 
47.79)

2.0° × 1.5° Betts (1986) Diagnostic calculation 
of cloud fraction

Note. The four values in parentheses following each model group name are the mean PC/PR ratio, F (%), I (mm/hr) and D (hr) in the tropics (20°S–20°N) for 
the group, while the values following each model name are the same metrics for the model.
Abbreviations: CMIP5, Climate Model Intercomparison Project Phase 5; PC/PR, convective-to-total precipitation
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in most CMIP5 models indicates that convective parameterizations may be overly active in producing con-
vective precipitation, particularly at low latitudes. By grouping models by their convective and microphys-
ics schemes, and comparing them on different spatial resolution within the same parameterization group 
(shown in same line color), we attempt to understand the separate influence of model resolution and phys-
ical schemes. The group-averaged PC/PR ratio, F, I, and D also suggest that the various parameterization 
types (Table 1) do not produce substantially different precipitation partitioning. Within the same group, the 
PC/PR ratio is smaller in models on finer resolution. This is mostly evident for the AS and Tiedtke groups, 
which include grid spacing from ∼0.5° to 2.8°. Yet this effect differs among different groups, and more rig-
orous sensitivity experiment (e.g., Chen & Dai, 2019) is required for confirmation.

Next, we select one model from each parameterization group (with similar grid spacing within 1°–2° when 
available) to illustrate model biases in precipitation characteristics (Figure 2). For total precipitation, most 
models have higher F and D, but lower I than TRMM (Figures 2a–2c). Note that the selected models all have 
grid spacing smaller than 2.5°. But even compared with the 2.5° TRMM benchmark, the bias is still consid-
erable. Over the tropics, the range of F is 30%–50% in the models, while it is 20%–30% in the 2.5° TRMM. 
Meanwhile, TRMM values are even smaller on a 0.5° grid. The overestimation is also striking for duration: 
models typically yield durations of 10–40 h, while TRMM observations are mostly below 10 h. Precipitation 
is less intense in the models than in real world, typically being only half the observed magnitude. The oppo-
site is true for frequency. Overall, there are no obvious differences among parameterization types in terms 
of capturing the observed characteristics. Among them, MIROC5, EC-EARTH, HadGEM2-ES, and GISS-
E2-R have relatively moderate “drizzling” bias. In most panels of Figure 2, the former three models have 
lower frequency, higher intensity, and shorter duration of precipitation events, which are closer to TRMM's 
values. For GISS-E2-R, it is worth noting that its convective and non-convective precipitation do not differ 
much in their characteristics. Both components exhibit moderate “drizzling” bias, leading to slightly larger 
“drizzling” bias than the other three models for its total precipitation.

Chen and Dai (2019) found that convective precipitation in CAM is more frequent and long-lasting, but 
less intense than non-convective precipitation. Overall, this is also true for many CMIP5 models in low lati-
tudes (Figure 2). The frequency is substantially higher for convective precipitation than for non-convective 
precipitation (Figures 2d and 2g). Some models have a frequency of <5% for non-convective precipitation 
in low latitudes (Figure  2g). The differences are less clear for intensity (Figures  2e and  2h). Four mod-
els (CCSM4, GFDL-CM3, CNRM-CM5, and GISS-E2-R) have higher intensity for non-convective than for 
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Figure 1.  The convective-to-total precipitation (PC/PR) ratio as a function of latitude in TRMM 3A25 (0.5°, thick black 
line) and 25 Climate Model Intercomparison Project Phase 5 (CMIP5) models. Models are color-coded and annotated 
by the parameterization type groups (see Table 1). Line patterns differ for models with different resolution: solid lines 
are for models with <1.0° grid sizes, dash lines are for 1.0°–2.0° and dotted lines are for >2.0° models.
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Figure 2.  Zonal-mean (a, d and g) frequency (F, %), (b, e and h) intensity (I, mm/hr) and (c, f and i) duration (D, hours) for total (PR, left), convective (PC, 
middle) and non-convective precipitation (PL, right) as a function of latitude. Eight models (CCSM4 (red), MIROC5 (blue), GISS-E2-R (magenta), HadGEM2-
ES (purple), IPSL-CM5A-MR (cyan), GFDL-CM3 (lightgreen) EC-EARTH (orange), and CNRM-CM5 (darkgreen)) using different convective parameterization 
schemes and closest resolution (see Table 1) are shown here. Values from TRMM 3B42 (thick black line for data on 0.5° grid and dash black line for data on 2.5° 
grid) are plotted for comparison.
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convective precipitation, while three others (HadGEM2-ES, MIROC5, and EC-EARTH) show lower inten-
sity for non-convective precipitation. However, all models agree that tropical convective precipitation lasts 
longer than non-convective precipitation (Figures 2f and 2i).

4.  Linking the PC/PR Ratio to the “Drizzling” Bias
The above results show that the “drizzling” bias is most prominent over the tropics (20°S–20°N). Hence, we 
focus on this region in the following analyses. First, we check whether convective and non-convective pre-
cipitation show different characteristics over the tropics across the 24 models. In the tropics, convective pre-
cipitation shows higher frequency (Figure 3a) and duration (Figure 3c) than non-convective precipitation 
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Figure 3.  (Left, a–c) Scatter plots of tropical (20°S–20°N) mean frequency (F, %), intensity (I, mm/hr), and duration (D, hr) for convective (PC, x-axis) and 
non-convective (PL, y-axis) precipitation; and (Right, d–f) tropical (20°S–20°N) mean F, I, and D for total precipitation as a function of convective-to-total 
precipitation (PC/PR) ratio for the 24 Climate Model Intercomparison Project Phase 5 (CMIP5) models. Model grid spacings are color coded as shown on panel 
(a). Linear regression lines and equations are shown in black. TRMM values (0.5° grid) are also shown (red cross).
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in most models. For intensity, models with >1° grid spacing exhibit mixed results, while the two models 
(MIROC4h and CMCC-CM) with <1° grids show higher intensity for convective than non-convective pre-
cipitation (Figure 3b). Surprisingly, the F, I, and D for the PC and PL only show a weak dependence on mod-
el resolution among the 24 CMIP5 models (Figures 3a–3c). Some models with <2° grids even have higher 
PC frequency than >2° grids models, while some models with >2° grids show higher PL intensity than 
models with <2° grids. This is in contrast to what is seen in CAM4, in which the F and D of PC increases 
greatly with grid size while the I of PL decreases rapidly with grid size (Chen & Dai, 2019). This suggests 
that differences in CMIP5 model physics are as important (if not more) as their resolution differences, in 
determining the precipitation characteristics.

The systematic F and D differences between convective and non-convective precipitation, together with 
the dominance of convective precipitation over the tropics, led us to hypothesize that the high PC/PR ratio 
may be related to the “drizzling” bias in low latitudes. Figures 3d–3f show the tropical-mean F, I, and D of 
total precipitation as a function of the PC/PR ratio across the 24 models. Overall, higher PC/PR ratios are 
associated with larger F and D but weaker I, although the data points are more scattered for higher PC/
PR ratios. The PC/PR ratio is significantly correlated with the F, I, and D (correlation coefficients are 0.46, 
−0.43, and 0.43, respectively). We did a sensitivity test by removing the two GISS models, because their PC/
PR ratio is much lower than other models with similar gird spacings. The correlation between the PC/PR 
ratio and F, I, and D (0.58, −0.5, and 0.46, respectively) further strengthens. These results suggest a link 
between the PC/PR ratio and the “drizzling” bias among the CMIP5 models, such that models with higher 
PC/PR ratios typically have more severe “drizzling” biases. As shown in Figures 3a–3c, convective precipi-
tation is usually more frequent and long-lasting. The results for intensity are mixed, with about 12 models 
have more intense non-convective precipitation than convective precipitation, while the other 12 models 
show the opposite. Interestingly, the two models with <1° gird show higher intensity for convective pre-
cipitation than for non-convective precipitation. Figure 3b shows that convective precipitation overall has 
lower intensity than non-convective precipitation among the CMIP5 models, consistent with CAM-based 
results (Chen & Dai, 2019). A high PC/PR ratio in a particular model means that total precipitation tends 
to inherit more characteristics of convective precipitation than non-convective precipitation, leading to a 
more severe “drizzling” bias.

Previous studies also showed that the estimated precipitation characteristics are sensitive to data or model 
resolution, and model resolution also influences partitioning of total precipitation for a given model (Chen 
& Dai, 2018; 2019). Figure 4 shows the PC/PR ratio, F, I, and D for total precipitation as a function of the 
model grid spacing. Overall, the dependence of F, I, and D on resolution shown in Figures 4b–4d are weaker 
than their dependence on the PC/PR ratio shown in Figures 3d–3f, again likely due to large influences from 
different model physics. For grid spacing within 0.5°–2.0°, higher-resolution models (especially CMCC-
CM and MIROC4h) generally have lower PC/PR ratios, frequency, and duration, but higher intensity than 
coarser-resolution models (Figure 4). However, this dependence weakens when the grid spacing is within 
2.0°–3.0°, over which the dependence of the intensity on grid size also weakens in the TRMM data (Fig-
ure 4). In fact, when computing the correlation among models with grid spacing <2° and >2° separately 
(Figure S1), the relationships are reversed. A few models (namely FGOALS-g2 and bcc-csm1-1) with the 
grid sizes around 3.0° have values similar to models with the highest resolution. This leads to the overall 
weaker dependence of precipitation characteristics on resolution across all models. Removing these two 
models boosts the correlation to 0.45 and −0.59 (p-value < 0.05) for frequency and intensity, but the correla-
tion coefficients for the PC/PR ratio and duration still remain insignificant (Figure S2). The relatively weak 
dependence on resolution among the CMIP5 models is expected given the large differences in cumulus 
schemes and other model physics among them, which all can contribute to the differences in their precipi-
tation characteristics. This is in contrast to the case where one model is used and the main difference is the 
grid spacing, whose influence on precipitation characteristics is much stronger (Chen & Dai, 2019).

To find out whether the weak dependence above 2° is due to a diminishing area-aggregation (as the spa-
tial sampling area or the size of grid box increases, the probability or frequency of precipitation increases, 
meanwhile intensity decreases, see Chen & Dai, 2018) effect, TRMM estimates on different grids and fitted 
relationships are also shown in Figure 4. The F and D still increase linearly above 2°, while intensity de-
creases roughly exponentially with resolution. This suggests that the area-aggregation effect above 2° does 
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not diminish for the F and D, but notably weakens for intensity. While other models with >2.0° resolution 
still have large biases, two models with the lowest resolutions (i.e., FGOALS-g2 and bcc-csm1-1) have mod-
est “drizzling” bias. When removed them, the correlation coefficients between grid spacing and the F and I 
become significant (0.45 and −0.59), but not for duration. Thus, it is likely that overall the area-aggregation 
effect is overshadowed by the influence of different model physics for models with >2.0° grid spacing, lead-
ing to no clear dependence of the F, I, and D on their model resolution.

Figure 5 summarizes the inter-model correlation coefficients among model resolution, PC/PR ratio, fre-
quency, intensity, and duration for the 24 CMIP5 models. Higher PC/PR ratio is associated with higher 
F, D but lower I, and vice versa. The correlations between model resolution and the other variables are 
statistically insignificant, and weaker than the correlations with the PC/PR ratio, especially for duration 
(Figure 5). Because PC/PR ratio is weakly related to resolution (Figure 4a), we then calculated partial corre-
lation coefficients by removing the influence of resolution through linear regression. The partial correlation 
between the PC/PR ratio and F or D is still significant at a 0.05 significance level. For intensity, the partial 
correlation is significant at a 0.1 significance level. Therefore, adjusting the partitioning of total precipita-
tion, for example, by modifying the convective and microphysics schemes to reduce convective precipitation 
while increasing non-convective precipitation (without increasing resolution) could reduce the “drizzling” 
bias. Another approach is to increase resolution for individual models, as more non-convective precipita-
tion would be resolved while less precipitation is convectively parameterized. The latter typically requires 
more computing power. Note that the correlations are strong among the F, I, and D since they are interre-
lated characteristics of precipitation.

CHEN ET AL.

10.1029/2020JD034198

10 of 17

Figure 4.  Tropical (20°S–20°N) mean (a) convective-to-total precipitation (PC/PR) ratio, (b) frequency (F, %), (c) intensity (I, mm/hr) and (d) duration (D, hr) 
of total precipitation as a function of model grid sizes for the 24 CMIP5 models. Annotations are same as Figure 3. The TRMM PC/PR ratio (0.5°) and the F, I, 
and D (on 0.5°, 1.0°, 1.5°, 2.0°, 2.5°, and 3.0° grids, red cross) and fitted functions (purple) are also shown.
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The release of CMIP6 offers an opportunity to explore whether the “drizzling” bias has been alleviated in 
new versions of these GCMs. For comparison, we examined changes in the “drizzling” bias in six CMIP6 
models corresponding to six of the model groups (Table 1), including the GFDL-CM4, EC-Earth3, MIROC6, 
IPSL-CM6A-LR, CNRM-CM6, and GISS-E2-1-G. Their spatial resolutions are mostly the same as their 
CMIP5 version, except that we interpolated the metrics for EC-EARTH (1.125°) to match the grid of EC-
Earth3 (0.703°). Due to data availability at the time we performed the analysis, we did not include CESM2 
and HadGEM3 models. Figure 6 shows the difference of F, I, and D for total, convective, and non-convective 
precipitation between the 6 CMIP6 models and their CMIP5-version. A few models show overall decreased 
frequency and increased intensity compared with their predecessors (Figure 6). In particular, GFDL-CM4 
and CNRM-CM6 exhibit appreciably reduced “drizzling” bias. The frequency for total and convective pre-
cipitation decreases about 10% over the tropics, while for non-convective precipitation it increases for up to 
20% at 10°N for these two models. GFDL-CM4 also shows notable decrease of duration (Figures 6c and 6f). 
Other models show no clear improvement. With increased F and D, IPSL-CM6A-LR has a more severe 
bias than its CMIP5 version. To understand whether changes of the bias are related to PC/PR ratio in the 6 
CMIP6 models, Figure 7a shows the difference of the PC/PR ratio between the CMIP6 and CMIP5 versions. 
Most noticeably, the PC/PR ratio decreases at every latitude in GFDL-CM4 and CNRM-CM6, whereas it 
generally increases in IPSL-CM6A-LR. Figure 7b further shows that models with larger decreases in tropi-
cal PC/PR ratio (e.g., CNRM-CM6 and GFDL-CM4) tend to have lower F and higher I, that is, reduced “driz-
zling” bias in the tropics. This inter-version comparison supports the results based on the CMIP5 models, 
and further suggests that more realistic precipitation partitioning between convective and non-convective 
precipitation helps alleviate the “drizzling” bias.

5.  Summary and Discussion
We have analyzed 3-hourly precipitation from 24 CMIP5 models and 6 CMIP6 models to examine the 
partitioning between convective and non-convective precipitation, and how this partitioning is linked to 
the “drizzling” bias in the models. We found that most CMIP5 models have unrealistically high convec-
tive-to-total precipitation (PC/PR) ratio, and they all have the “drizzling” bias to different degrees, similar 
to CMIP3 models (Dai, 2006). We also found that convective precipitation exhibits higher frequency (F) and 
longer duration (D) than non-convective precipitation, but lower intensity (I, for some models), consistent 
with previous results with CAM4 and CAM5 (Chen & Dai, 2019). Combined with the high PC/PR ratio, 
this contributes to the “drizzling” bias. Significant relationships are found between the PC/PR ratio and the 
F, I, and D, such that a larger “drizzling” bias in low latitudes is typically associated with a higher PC/PR 
ratio. Furthermore, we showed that across the 24 CMIP5 models, the PC/PR ratio and the “drizzling” bias 
increase as the grid size increases from 0.5° to 2.0°. However, this dependence becomes weak as the grid 
size increases from 2.0° to 3.0°, even though the area-aggregation effect does not diminish above 2.0°. This 
weakening is partly due to two outlier models with the largest grid spacing. It also suggests that differences 
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Figure 5.  Cross correlation coefficients of model resolution, convective-to-total precipitation (PC/PR) ratio, 
precipitation frequency, intensity, and duration among the 24 Climate Model Intercomparison Project Phase 5 (CMIP5) 
models. Partial correlation coefficients between the PC/PR ratio and F, I, or D are shown in red calculated by removing 
the effect of resolution. The correlation coefficients that are significant at least at a 10% significance level are contained 
in the green rectangles.
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in model physics play a bigger role at these resolutions. Different model physics also weaken the depend-
ence on model resolution compared with that seen in a single model (Chen & Dai, 2019).

Nevertheless, tuning the precipitation schemes to reduce convective but increase non-convective precipi-
tation should reduce the “drizzling” bias at low latitudes. Increasing model resolution also help in mitigat-
ing the biases. Some of the CMIP6 models show reduced “drizzling” bias associated with decreased PC/
PR ratio. We believe the improved and more realistic precipitation partitioning in the six CMIP6 models 
(compared with their CMIP5 predecessors) contribute to the reduced “drizzling” bias. These results are gen-
erally consistent with previous findings that are mainly based on NCAR models (e.g., Chen & Dai, 2019). 
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Figure 6.  Difference of (a–c) total, (d–f) convective, and (g–i) non-convective precipitation characteristics between the Climate Model Intercomparison Project 
Phase 6 (CMIP6) and CMIP5 versions of six models. The CMIP6 models are MIROC6 (blue), GISS-E2-1-G (magenta), IPSL-CM6A-MR (cyan), GFDL-C42 (i.e., 
GFDL-CM4_gr2, lightgreen), EC-Earth3 (orange), and CNRM-CM6 (darkgreen).
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Therefore, we recommend that besides the mean precipitation distributions in the tropics, the PC/PR ra-
tio should be incorporated as a new metric for the modeling community to further improve precipitation 
simulation. Similar practices have been suggested by several previous studies (e.g., Bacmeister et al., 2014; 
Dai, 2006). We believe such metrics could allow more comprehensive diagnostics and evaluation in the 
model development process.

As mentioned above, the inconsistencies in the definition of the convective and non-convective precip-
itation between models and TRMM data make it difficult for a precise comparison. Some observational 
evidence indicates that convective precipitation intensity is smaller than that of stratiform precipitation 
over the vast oceans (Houze et al., 2015; Yang & Smith, 2008), similar to models' depictions. Over land, 
convective precipitation is more localized and can attain larger intensity than non-convective precipita-
tion (Schumacher & Houze, 2003). However, the large PC/PR ratio difference over the tropics (Figure 1) 
between models and TRMM should exceed the uncertainty associated with the definition difference. Given 
these uncertainties, research efforts in unifying precipitation classification methods (e.g., Kay et al., 2018) 
would facilitate bridging the gap between observed and simulated precipitation.

In terms of the different parameterization groups, our results show that most of them have high PC/PR 
ratios and “drizzling” biases to different extent. Overall, there is no clear winner among the parameteri-
zation groups. The group-mean metrics (Table 1) suggest that models using Arakawa and Schubert (1974) 
and Tiedtke  (1989) schemes appear to have a smaller “drizzling” bias. In the AS-type scheme, multiple 
convective updrafts with different heights (depending on the entrainment rate) are explicitly calculated 
within a single grid cell, although each updraft is a simplified entraining plume (Mizuta et al., 2012). Ema-
nuel (1991) also pointed out that the quasi-equilibrium assumption in the AS scheme agrees with observa-
tions. In addition, most models in the AS group have a relative humidity (RH) threshold-based suppression 
mechanism, which prevents too frequent occurrence of convective precipitation (Rosa & Collins, 2013). On 
the other hand, only a single convective updraft is calculated within a single grid cell in the Tiedtke-type 
scheme, but more detailed entraining and detraining plume is represented. The resolution-dependent time 
scale for CAPE consumption, as in CMCC-CM (Nordeng, 1994), also helps adjust precipitation partition-
ing (Williamson,  2013) and reduce the “drizzling” bias. Two CMIP6 models (i.e., CNRM-CM6 and GF-
DL-CM4), which show reduced “drizzling” bias, used different convection schemes. A double plume con-
vection scheme was used in GFDL-CM4. At a given time, the double plume scheme can contain one plume 
for shallow convection and another for deep convection (Zhao et  al.,  2018). CNRM-CM6 also contains 
major changes to its convection scheme over its CMIP5 version (Voldoire et al., 2019). In addition to contin-
uous and prognostic treatment of dry, shallow, and deep convection, the new scheme separates convective 
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Figure 7.  (a) Change of the convective-to-total precipitation (PC/PR) ratio as a function of latitude in 6 Climate Model Intercomparison Project Phase 6 
(CMIP6) models. (b) Scatter plot showing relative change (%) of PC/PR ratio versus precipitation frequency (f), intensity (i) and duration (d), between the 6 
CMIP6 models and their CMIP5 version. The CMIP6 models are MIROC6 (blue), GISS-E2-1-G (magenta), IPSL-CM6A-MR (cyan), GFDL-C42 (i.e., GFDL-
CM4_gr2, lightgreen), EC-Earth3 (orange), and CNRM-CM6 (darkgreen).
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microphysical processes from convective scheme itself. The stratiform microphysics scheme is also changed 
from the one used in CNRM-CM5. These changes may play important roles in alleviating the “drizzling” 
bias in the two CMIP6 models. Hence, improved convection and microphysics schemes can lead to im-
proved simulations of the precipitation characteristics, which adds credibility to their projections of future 
precipitation changes. Although our results show overall no salient difference among the parameteriza-
tion groups, their nuances discussed above suggest that in-depth analyses from a moist process perspective 
might help pinpoint other key players (e.g., mean humidity and clouds) that lead to the differences. Better 
understanding of the biases in these key fields may shed light on the biases in precipitation partitioning and 
the “drizzling” bias across models that employ different physics parameterizations.

Data Availability Statement
CMIP5 model output is archived by PCMDI (available from https://pcmdi.llnl.gov/mips/cmip5). The 
TRMM 3B42 data set is available at https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_7/summary?key-
words=TRMM%203b42, and the TRMM 3A25 data set is available at https://disc.gsfc.nasa.gov/datasets/
TRMM_3A25_7/summary?keywords=TRMM%203a25. The GPCP v2.2 is available at https://rda.ucar.edu/
datasets/ds728.2/.
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